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The effects of applying a constant electric field E to an ionic autocatalytic reaction
with a general power p(p � 1) are discussed through a consideration of the equa-
tions for the corresponding travelling waves. It is shown that, when the ratio of diffusion
coefficients D of autocatalyst and substrate is less than some value D0 (which depends
on p), the effect of a negative electric field is to increase the wave speed of the reaction
front over its field-free value. This is in contrast to previous results for cubic autocataly-
sis (p = 2) [J.H. Merkin and H. Ševčı́ková. J. Math. Chem. 25 (1999) 111.] for D > D0,
where the effect is to decrease the wave speed. This feature, seen in the numerical solu-
tions of the travelling wave equations, is confirmed by an expansion for small E and in
an asymptotic analysis for p large.

KEY WORDS: reaction–diffusion fronts, autocatalytic reactions, electric field effects,
range of existence
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1. Introduction

Much of the previous work on the effects that electric fields have on reac-
tion fronts in ionic autocatalytic systems has been concerned with quadratic
autocatalysis, see [1]–[6] for example. In this somewhat special case (and perhaps
degenerate case, see [7] and the full discussion on fractional orders of autoca-
talysis in [8]), the wave speed can be found explicitly and hence the conditions
for the existence of a reaction front can be established in terms of the (dimen-
sionless) electric field strength E and D, the ratio of the diffusion coefficients of
autocatalyst and substrate, see particularly [2]. This analysis is based on waves
which have the their “minimum possible” or “linearly determined” speed. It is
these waves that evolve as the large time solutions in the numerical simulations
for localised initiation. This is not the case when effects of a complexing agent
(e.g., starch) are included, in this case waves with speeds faster than those with
the linearly determined speed can arise as the large time solutions [9,10]. When
conditions on D and E are such that travelling wave solutions do not exist,
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the complete electrophoretic separation of the reaction species is observed in the
numerical simulations, see [1,2].

Previous work on higher-order autocatalysis is much more limited. A pre-
vious study [11] for cubic autocatalysis has shown that the wave speed has to be
determined numerically from the travelling wave equations, at least for D �= 1,
and that there are distinct differences in the behaviour of solution between the
cases D > 1 and D < 1. For D < 1, there is a positive upper bound on E for
the existence of travelling wave solutions, with these existing for all negative E.
The opposite is the case for D > 1, here there is a negative lower bound on E

for waves to exist, with waves existing for all positive electric field strengths. Out-
side these ranges electrophoretic separation of the reacting species is seen. An
important feature of the wave speeds for quadratic autocatalysis and for the spe-
cific results given in [11] is that a positive field, in the sense that the ionic species
are propagating towards an electrode of the opposite polarity, increases the wave
speed over what it would be in field-free conditions, with the converse being the
case in a negative field. This is generally accepted as being “intuitively obvious”
for these simple systems; the electrode, depending on its polarity, either enhances
or reduces transport in the direction of propagation. However, we find that this
is not always the case, for values of D sufficiently less than unity (in fact not
much less than the value D = 0.5 used in [11]) the electric field has a counter-
intuitive effect. A negative field, in the sense described above, increases the wave
speed and a positive field reduces it, at least for moderate field strengths.

To demonstrate this, perhaps unexpected, result is the main purpose of this
paper. To do so we consider a general order for the autocatalytic reaction

A + pB → (p + 1)B rate k0abp (1)

where assume that p � 1 and where a and b are the concentrations of substrate
A and autocatalyst B and k0 is a constant. The dimensionless travelling wave
equations corresponding to equation (1) are, see [11] for example,

a′′ + (c − E)a′ − abp = 0, (2)

Db′′ + (c − DE)b′ + abp = 0 (3)

(primes denote differentiation with respect to the travelling co-ordinate y). In
equations (2 and 3) c(>0) is the (constant) wave speed, D = DB/DA is the ratio
of the diffusion coefficients of reactant species B and A and E is the (dimen-
sionless) electric field strength. Equations (2 and 3) are subject to the boundary
conditions

a → 1, b → 0 as y → ∞, a → 0, b → bs as y → −∞ (4)

where bs is a constant to be determined, in general bs �= 1.
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Equations (2 and 3) are based on the high ionic strength approximation
normally used in this context, see [2] for a formal justification for making this
approximation. The electric field depends on the concentrations of all the ionic
species present. Usually experiments are performed with the reactants dissolved
at relatively small concentrations in water, so that the reactant species have con-
centrations which are then small relative the other ionic species present (usually
arising from the dissociation of water). This means that, to a good approxima-
tion, we can regard the electric field as a constant. A case when this assumption
is not made (and a more general derivation of the travelling wave equations for
reaction fronts in ionic systems) and in which the applied electric current is taken
as constant with the electric field varying with the concentrations of the reacting
species, has been discussed in [12,1]. We start by giving some general properties
that can be derived directly from equations (2–4).

2. General results

If we add equations (2 and 3), integrate and apply the boundary conditions
as y → ∞, we obtain

a′ + (c − E)(a − 1) + Db′ + (c − DE)b = 0 (5)

from which it follows, on letting y → −∞, that

bs = 1 + (D − 1)E

c − DE
. (6)

This gives a relationship between bs and c for general orders of autocatalysis
p and shows, for D �= 1, E �= 0, that bs �= 1. The wave speed c has to be deter-
mined from equations (2 and 3). However, for quadratic autocatalysis (p = 1),
equation (3) gives, on linearising about a = 1, b = 0, a “minimum possible” wave
speed

c = 2
√

D + DE (7)

Expression (7) can then be applied in (6) and the conditions for a “linearly deter-
mined” wave established, requiring bs > 0, as

E <
2
√

D

(1 − D)
, (D < 1) or E > − 2

√
D

(D − 1)
, (D > 1) (8)

From (6) (or (8)), it is clear that D = 1 is a special case, which we now consider.
D = 1, DA = DB . In this case we can use expression (5) to show that a +

b = 1 for all y, so that bs = 1 (as confirmed by (6)). Equations (2–4) can then
be reduced to

b′′ + (c − E)b′ + (1 − b)bp = 0, b → 0 as y → ∞, b → 1 as y → −∞
(9)
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The solution to problem (9) is essentially independent of the electric field
strength E, in the sense that, if we solve the problem in the field-free E = 0 case
to obtain a wave speed c0 (say), the wave speed (and the solution in general) is
obtained from this one just by replacing c0 by c − E. Thus, when D = 1 (equal
diffusion coefficients), the effect of the electric field is only to increase (E > 0) or
to decrease (E < 0) the wave speed by an amount |E| without changing the wave
profile. A plot of c0 (or c − E) against p is shown in figure 1. The figure shows
the singularity in the solution as p → 1 derived in [7] and has the asymptotic
form c ∼ √

2/p for p large [13].
The above discussion shows that, at a field strength E = −c0, the wave will

become steady and will propagate in the negative direction if E < −c0. We can
extend this result for steady waves to the general case, and from now on we will
assume that D �= 1.

Steady waves. These are waves for which c = 0, i.e., have been brought to
rest by the applied electric field. Suppose this occurs at a field strength E = E0,
from equations (2 and 3), E0 < 0. Hence E0 is determined by solving equations
(2–4) with c put to zero. Note that, in this case, expression (6) gives bs = D−1,
suggesting a transformation (see also [11])

b = D−1b, y = D− p

2 y, E0 = D− p

2 E0 (10)

1 2 3 4 5 6 7 8 9 10

0.5

1.0

1.5

2.0

p

c0

Figure 1. The wave speed c0 for field-free conditions (E = 0) and equal diffusivities (D = 1), as
given by (9) plotted against the order of autocatalysis p. The application of an electric field is to

change the wave speed to c0 + E.
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Applying (10) in the original equations (2,3) with c = 0 gives

a′′ − E0a
′ − ab

p = 0, b
′′ − E0b

′ + ab
p = 0 (11)

a → 1, b → 0 as y → ∞, a → 0, b → 1 as y → −∞
(In (11) primes denote differentiation with respect to y.) Problem (11) is, in
effect, problem (9) for the case when D = 1. Thus we have E0 = −c0 or

E0 = −c0D
−p

2 (12)

where c0 is the field-free wave speed for D = 1.
We now consider the solution to the travelling wave equations (2–4) in more

detail.

2.1. Travelling waves

In general, equations (2–4) have to be solved numerically, with the solution
determining the wave speed c in terms of D, the electric field strength E and the
order of the autocatalysis p (as well as determining the corresponding wave pro-
files). Results for cubic autocatalysis (p = 2) have already been given in [11] for
D = 2.0 and D = 0.5 and here we concentrate on smaller values of D. Results,
wave speed c plotted against E, are shown in figure 2a for D = 0.1. As in [11]
for D = 0.5, there is a (positive) upper bound Ec on E for the existence of a
solution, with two solution branches for 0 < E < Ec. This can be seen more
easily in figure 2b, where we re-plot the results shown in figure 2a for small val-
ues of E to highlight this behaviour. In this case Ec = 0.0321, a relatively small
value compared to that seen in [11] for D = 0.5. However, there is an important
difference between the results shown in figure 2a with those in [11], in that here
the wave speed increases for negative E, whereas in [11] it decreased. This can,
perhaps, be more easily seen in figure 2b. Figure 2a shows that, for D = 0.1, the
maximum value of the wave speed c = 0.244 is achieved with E = −1.5. So that
for this value of D, a wave can travel faster in a negative field than it does in
field-free conditions. In fact, speeds of up to three times the field-free value can
be achieved in the appropriate negative fields.

To examine this point further, we now construct a solution to the travelling
wave equations (2–4) valid for small E. We look for a solution by expanding

a(y; E) = a0(y) + Ea1(y) + · · · , b(y; E) = b0(y) + Eb1(y) + · · · ,

c(E) = c0 + Ec1 + · · · (13)

At leading order we obtain the equations for the field-free case

a′′
0 + c0a

′
0 − a0b

p

0 = 0, Db′′
0 + c0b

′
0 + a0b

p

0 = 0 (14)

a0 → 1, b0 → 0 as y → ∞, a0 → 0, b0 → 1 as y → −∞
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Figure 2. (a) The wave speed c of the reaction fronts for cubic autocatalysis (p = 2), as given by
(2–4), plotted against E for D = 0.1, showing the increase in wave speeds in negative fields. (b) Wave
speeds for smaller values of E, showing the multiple solutions for 0 < E < Ec and no solutions for

E > Ec, with Ec = 0.0321 for D = 0.1.
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At O(E) we have

a′′
1 + c0a

′
1 − b

p

0 a1 − pa0b
p−1
0 b1 = (1 − c1)a

′
0

Db′′
1 + c0b

′
1 + b

p

0 a1 + pa0b
p−1
0 b1 = (D − c1)b

′
0 (15)

a1, b1 → 0 as y → ∞, a1 → 0, b1 → (D−1)

c0
as y → −∞

We note, from equations (15), that

a′
1 + c0a1 + (1 − c1)(1 − a0) + Db′

1 + c0b1 − (D − c1)b0 = 0 (16)

giving the boundary condition on b1 consistent with (6) for small E.
We construct a solution to equations (15) in the form

a1 = (D − 1)

c0
a1 + A1, b1 = (D − 1)

c0
b1 + B1 (17)

In (17) (a1, b1) satisfy the homogeneous equations arising from (15) and subject
to the boundary conditions

a1 → 0 as |y| → ∞, b1 → 0 as y → ∞, b1 → 1 as y → −∞ (18)

and (A1, B1) satisfy the full equations, but subject to the homogeneous boundary
conditions

A1, B1 → 0 as |y| → ∞ (19)

Now equations (15) have a solution a1 = a′
0, b1 = b′

0 which satisfies the
homogeneous problem and homogeneous boundary conditions. From this it fol-
lows that a compatibility condition is required for the non-homogeneous prob-
lem (15) to have a solution satisfying all the boundary conditions. This, in turn,
determines the constant c1. To derive this condition we need to consider the
adjoint problem [14] (Theorem 2.2., p. 307) and to do so we start by writing
equations (15) in the form

d
dy

(
ec0yA′

1

)− (b
p

0 A1 + pa0b
p−1
0 B1)ec0y = (1 − c1)ec0ya′

0 (20)
d
dy

(
De

c0y

D B ′
1

)
+ (b

p

0 A1 + pa0b
p−1
0 B1)e

c0y

D = (D − c1)e
c0y

D b′
0

and then following [14] we construct the corresponding adjoint problem for
(U(y), V (y))

d
dy

(
ec0yU ′)− b

p

0 (ec0yU − e
c0y

D V ) = 0
(21)

d
dy

(
De

c0y

D V ′
)

− pa0b
p−1
0 (ec0yU − e

c0y

D V ) = 0
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subject to

U, V → 0 as y → ±∞ (22)

If we now multiply (20)a by U and (20)b by V , add and integrate from −∞ to
∞, we obtain, after integrating by parts and applying the boundary conditions
(19) on (A1, B1), the compatibility condition

(1 − c1)

∫ ∞

−∞
ec0ya′

0Udy + (D − c1)

∫ ∞

−∞
ec0y/Db′

0V dy = 0 (23)

It is from condition (23) that we determine c1. Problem (20) and the adjoint
problem (21 and 22) have to be solved numerically, with (23) then being used
to calculate c1. A graph of c1 against D is shown in figure 3 for cubic autoca-
talysis (p = 2). The figure shows that there is a value D0 (which will depend on
p) such that c1 < 0 for D < D0 and that c1 > 0 for D > D0, with D0 � 0.435
for p = 2. Also the figure suggests that c1 → 0 as D → 0, having a minimum
value of c1 � −0.336 at D � 0.157. Thus for D < D0, the wave speed starts by
increasing as the field changes from positive to negative and we can expect (as
in figure 2a) a range of (negative) E over which the wave speed is greater in a
negative field than in field-free conditions.

We solved the adjoint problem (21 and 22) for higher values of p, having
first calculated the corresponding travelling wave solution. The results are shown
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Figure 3. The solution for small E, a plot of the constant c1, which indicates how the applied elec-
tric field alters the field-free wave speed c0, obtained from the compatibility condition (23) for cubic

autocatalysis (p = 2) against D. The wave speed c ∼ c0 + c1E.
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in figure 4, with plots of c1 against D for p = 3, 5, 10. This figure shows the
same effect seen for cubic autocatalysis, in that, for smaller values of D, i.e.,
D < D0(p), the wave speed starts by increasing in a negative field over that
which arises in field-free conditions. The value of D0 (where c1 changes from
positive to negative) increases with p, from D0 = 0.551 for p = 3 to D0 = 0.644
for p = 5 and to D0 = 0.672 for p = 10. Also, the minimum value of c1 increases
over that for cubic autocatalysis for p = 3 and p = 5, to c1 = −0.434 and
c1 = −0.368, respectively, though for p = 10 this minimum value has decreased
to c1 = −0.186.

Figure 4 suggests that, as the order of the autocatalysis increases, the effect
of a negative field to increase the wave speed becomes more pronounced, in that
it is seen for greater range of D. To examine this further we next construct an
asymptotic analysis of the travelling wave equations (2 – 4) for p large. This anal-
ysis also reveals further qualitative information about the nature of the solution.

2.2. Solution for p large

The asymptotic solution of equations (2–4) for p large follows that for the
field-free case, see [13,15] for example. We require two regions, an inner region
where the reaction terms are significant and an outer, purely diffusive region. To
get a consistent asymptotic solution we need to scale c and E (as in [13,15]) by

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.4

-0.2

0.0

0.2

0.4

3

5

10

D

c1

Figure 4. A plot of the constant c1 obtained from the compatibility condition (23) for powers of
autocatalysis p = 3, 5, 10 against D. The wave speed c ∼ c0 + c1E for E small.
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c = cp−1, E = Ep−2 with c, E of O(1) for p large. (24)

We start in the inner region where we leave y unscaled and write

b = 1 − p−1B, a = p−1A (25)

and look for a solution by expanding A, B and c in inverse powers of p. The
leading order terms A0, B0 and c0 in this expansion satisfy the equations

A′′
0 − A0e−B0 = 0, DB ′′

0 − A0e−B0 = 0 (26)

We solve equations (26) subject to

A0 → 0, B0 → T0 (and B ′
0 → 0) as y → −∞ (27)

where T0 is a constant to be determined. This leads to A0 = D(B0 − T0) and
hence

B
′2
0 = 2

[
e−T0 − (B0 − T0 + 1)e−B0

]
(28)

As y → ∞, B0 becomes large, with (28) then showing that

B0 ∼
√

2e− T0
2 y + · · · , A0 ∼

√
2De− T0

2 y + · · · as y → ∞ (29)

We now turn to the outer (diffusive) region. Expressions (25 and 29) sug-
gest an outer variable Y = p−1y. Then, leaving a and b unscaled and noting that,
since b < 1 in this region, the reaction terms are negligible for p � 1, we obtain
the equations for the leading order terms a0(Y ), b0(Y ) as, on using (24),

a′′
0 + c0a

′
0 = 0, Db′′

0 + c0b
′
0 = 0 with a0 → 1, b0 → 0 as Y → ∞ (30)

and, subject to matching with (29), that

a0 ∼
√

2De− T0
2 Y, b0 ∼ 1 −

√
2e− T0

2 Y as Y → 0 (31)

The required solution is

a0(Y ) = 1 − e−c0Y , b0 = e−c0Y/D (32)

with the matching conditions (31) then giving

c0 =
√

2De− T0
2 (33)

We need a further relation between T0 and c0. This can be determined by
looking at the equations that arise at O(p−1) in the inner region and match-
ing with the solutions corresponding equations in the outer region. However, a
more straightforward approach is to use expression (6), which holds for all p.
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Applying the scalings (24) in (6) and expanding, gives T0 = − (D−1)E

c0
, with (33)

then giving

c0 =
√

2D exp

(
(D − 1)E

2c0

)

(34)

For D = 1, expression (34) gives c0 = √
2, independent of E.

To examine expression (34) for D �= 1, we write it as

E = 2c0

(D − 1)

[
log c0 − log(

√
2D)

]
(35)

Expression (35) shows that E → 0 as c0 → 0 and E = 0 at c0 = √
2D, with a

turning point at

c0 =
√

2De−1, E = −2
√

2De−1

(D − 1)

These expressions show that the forms for D < 1 and D > 1 are qualitatively
different. This can be seen in figure 5, where we give representative plots of c0

against E for D > 1 (figure 5a) and for D < 1 (figure 5b). The forms shown in
figure 5 are qualitatively the similar to those given in [11] and in figure 2. For
D > 1 there is a lower bound Ec < 0 on E for the existence of a solution, with
solutions existing for all E > Ec, whereas for D < 1 there is an upper bound
Ec > 0 on E, with solutions existing for all E < Ec. Also, for D < 1, c0 increases
as E changes from positive to negative (as seen in figure 2) suggesting that neg-
ative fields increase the wave speed over the field-free value for all D < 1 in the
large p limit, which is consistent with the results shown in figure 4. Finally, (35)
gives the bound on existence

Ec ∼ −2
√

2De−1

(D − 1)
p−2 + · · · as p → ∞ (D �= 1) (36)

Expression (36) shows that, for high powers of autocatalysis, the effect of apply-
ing an electric field is strongly inhibitory on wave formation, in positive fields
when D < 1 and in negative fields when D > 1.

3. Conclusions

We have seen that, when D < D0(p)(<1), the effects of a negative field, in
the sense that the ionic species are propagating towards an electrode of the same
polarity, is to increase the speed of the reaction front from what would arise in
field-free conditions. Wave speeds considerably greater than the field-free value
can be achieved for appropriate values of D and E (as seen in figure 2). This
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Figure 5. Representative plots of the wave speed c0 against the electric field strength E in the large
p limit obtained from expression (35) for (a) D > 1, (b) D < 1.

result is contrary to what, at first, might be thought to happen. The effect of a
negative field is to slow down the transport of the ionic species towards the elec-
trode and thus a slow down in the propagation speed could be expected. This is
what is observed [11] if the diffusion coefficient of the autocatalyst B is greater
than, or not too much less than, that of the substrate A. A propagating reac-
tion front is a balance between the production of B from A by the autocatalytic
reaction and the diffusion and ionic transport of A into and of B away from the
reaction zone. Hence, when D < D0, the reduced rate of diffusion and trans-
port of B over that of A enhances the reaction rates within the front and, as a
consequence, the speed of propagation. Very large (negative) fields are needed to
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overcome this effect, to slow down and even reverse the direction of propagation
of the wave (see result (12)).

Our numerical solutions of the travelling wave problem (2–4) were mainly
for cubic autocatalysis (p = 2) and complement those given previously [11]. Our
results for D = 0.1 (figure 2) clearly show the enhancing effect of a negative
field. To discuss this point in more detail we considered how the solutions to the
travelling wave problem (2–4) behaved for small E. To this end we calculated c1,
where the wave speed c � c0 + c1E for |E| 	 1 (c0 being the field-free value).
This calculation determined D0 = D0(p), the value of D where c1 = 0 and so
where there was a change from a decrease in wave speed (c1 > 0, D > D0) to an
increase in wave speed (c1 < 0, D < D0) as E changed from positive to negative
(see figure 3). We also performed this calculation to find c1 for a range of values
of p, finding that the value of D0 increased as p was increased (see figure 4).

A point to note about how c1 was calculated (equations (15, 20–23) is that
it is the same as that used to calculated the growth rate σ (say) in the linear
stability analysis for transverse instabilities of reaction fronts in autocatalytic
systems (1) [16] (without an applied electric field). In this case, the calculation
determines how σ behaves for small wavenumbers k, with σ � −c1k

2. Thus the
condition for a negative field to increase the wave speed is the same as that for
a transverse diffusional instability in a field-free environment, with our calcula-
tions suggesting that the reaction front will become unstable over a greater range
of D as the order p of the autocatalysis is increased.

We performed an asymptotic analysis for p large. These results gave a qual-
itative confirmation of the wave speed curves for D > 1 and D < 1 computed
previously (figure 5), showing the inhibition in positive fields for D < 1 and in
negative fields for D > 1 (as seen in [11] and figure 2). They also suggested that
D0 → 1 in the limit as p → ∞ and gave a very weak, of O(p−2), field strength
for inhibition (result (36)). This effect can also be seen in (12), which gives a
field strength E0 ∼ −

√
2

p
D−p/2 for p large at which the direction of propagation

changes, showing that E0 is very small (and the range of existence in negative
fields severely limited) when D > 1 but takes very large (and negative) values
when D < 1.
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[4] L. Forštova, H. Ševčı́ková, M. Marek and J.H. Merkin, Chem. Eng. Sci. 55 (2000) 233.
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